
Maxis NB-IoT Challenge Workshop

In the end of the workshop, you will learn how to:

1. Interface, control and acquire data from various kinds of sensors using

Raspberry Pi with Grove Pi.

2. Establish connection between Raspberry Pi and Maxis NB-IoT network.

3. Send sensor telemetry from Raspberry Pi to Microsoft Azure Cloud via NB-

IoT network.

4. Create simple server and web application to view and monitor the activity of

the sensors connected to Raspberry Pi.

Courses

Microsoft Azure Basic Setup

Rasbperry Pi + Azure Integration

Raspberry Pi + Grove Pi Setup

Raspberry Pi + NB-IoT Setup

Build Sensors Monitoring Web Application hosted at Azure Cloud

Downloads

• Related materials are at https://github.com/CytronTechnologies/maxis-

nbiot-hackathon.

• You can either git clone this repo or simply download it.

azure/
raspberrypi/send_telemetry_to_azure/
raspberrypi/grovepi/
raspberrypi/nbiot/
web/node-red/
https://github.com/CytronTechnologies/maxis-nbiot-hackathon
https://github.com/CytronTechnologies/maxis-nbiot-hackathon

Create Iot Hub and Devices In Azure

Steps

Sign up for Free Microsoft Azure Account

To create and use Azure services, you will eventually need an account.

Remember, the account is free - you will not be charged for any services until you

convert the account to a pay-as-you-go account.

1. In a web browser, navigate to azure.microsoft.com, and click Free Account.

2. On the Create your Azure free account today page, click Start free > button.

3. Scroll down through the page - it lists the products you can access for free,

as well as the free products available for the first year.

4. Click the Start free > button. You'll be prompted to sign in with your

Microsoft account. Sign in with your Microsoft credentials or create a new

free Microsoft account.

5. On the About you page, select your correct country or region, and then enter

your first and last names, along with your email address and phone number.

Depending on your country, you may see additional fields, such as a VAT

number. Click Next to continue.

6. On the Identity verification by phone screen, select your country code, and

type the number of a telephone to which you have immediate access.

7. You have the option of text or callback to obtain a verification code. Click the

relevant button, type the code in the Verification code box, and click Verify

code.

Note

You will need a valid credit card to create the account. This is used for age and identity

validation only. Your card will not be charged until you decide to upgrade the free/trial account

to a full subscription.

https://azure.microsoft.com/

8. If the verification code is correct, you will now be asked to enter details of a

valid credit card. Enter the card number, the expiration date, the CVV number,

your name, and address, and click Next.

9. Finally, check the box to accept the subscription agreement, privacy

statement, and communications policy. The second checkbox is optional.

Now click Sign up.

Install Azure Command-Line Interface (CLI)

The Azure command-line interface (CLI) is Microsoft's cross-platform command-

line experience for managing Azure resources. The Azure CLI is easy to learn and

the perfect tool for building custom automation that works with Azure resources.

See all of the supported installation platforms.

Reference

For reference, please visit Microsoft Documentation - Create an Azure account

Windows 10

Ubuntu 16.04+ macOS

Azure Cloud Shell

Download the

MSI installer

Ubuntu install

instructions

macOS install

instructions

Run in your browser

on Azure Cloud Shell

Reference

For more references, please visit Microsoft Documentations - Overview of Azure CLI

https://docs.microsoft.com/en-us/learn/modules/create-an-azure-account/5-exercise-create-an-azure-account
https://aka.ms/installazurecliwindows
https://aka.ms/installazurecliwindows
install-azure-cli-apt/
install-azure-cli-apt/
install-azure-cli-macos/
install-azure-cli-macos/
https://shell.azure.com
https://shell.azure.com
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/?view=azure-cli-latest

Create IoT Hub

This section describes how to create an IoT hub using the Azure portal.

1. Log in to the Azure portal.

2. Choose +Create a resource, then Search the Marketplace for the IoT Hub.

3. Select IoT Hub and click the Create button. You see the first screen for

creating an IoT hub.

4. Fill in the fields.

• Subscription: Select the subscription to use for your IoT hub.

• Resource Group: You can create a new resource group or use an

existing one. To create a new one, click Create new and fill in the name

you want to use. To use an existing resource group, click Use existing

and select the resource group from the dropdown list. For more

information, see Manage Azure Resource Manager resource groups.

• Region: This is the region in which you want your hub to be located.

Select the location closest to you from the dropdown list.

• IoT Hub Name: Put in the name for your IoT Hub. This name must be

globally unique. If the name you enter is available, a green check mark

appears.

https://portal.azure.com
https://portal.azure.com
https://docs.microsoft.com/en-us/azure/azure-resource-manager/manage-resource-groups-portal

5. Click Next: Size and scale to continue creating your IoT hub. On this screen,

you can take the defaults and just click Review + create at the bottom.

• Pricing and scale tier: You can choose from several tiers depending on

how many features you want and how many messages you send

through your solution per day. The free tier is intended for testing and

evaluation. It allows 500 devices to be connected to the IoT hub and up

to 8,000 messages per day. Each Azure subscription can create one IoT

Hub in the free tier.

• IoT Hub units: The number of messages allowed per unit per day

depends on your hub's pricing tier. For example, if you want the IoT hub

to support ingress of 700,000 messages, you choose two S1 tier units.

Important!!

Because the IoT hub will be publicly discoverable as a DNS endpoint, be sure to avoid

entering any sensitive or personally identifiable information when you name it.

For details about the other tier options, see Choosing the right IoT Hub

tier.

• Advanced / Device-to-cloud partitions: This property relates the device-

to-cloud messages to the number of simultaneous readers of the

messages. Most IoT hubs only need four partitions.

6. Click Review + create to review your choices. You see something similar to

this screen.

7. Click Create to create your new IoT hub. Creating the hub takes a few

minutes.

Reference

For more references, please visit Microsoft Documentations - Create an IoT hub using the Azure

portal.

https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-scaling
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-scaling
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-create-through-portal

Register Iot Devices

A device must be registered with your IoT hub before it can connect. In this

quickstart, you can use local terminal or Azure Cloud Shell to register a

simulated device.

1. Login to your Azure Account with command below.

2. Run the following command to create the device identity.

YourIoTHubName: Replace this placeholder below with the name you

choose for your IoT hub.

NameOfYourDevice: The name of the device you're registering. You can

choose any name for your device. In following workshop, you will need to

use the same device name throughout this article. You will also need to

update the device name in the sample applications before you run them.

3. Run the following commands in local terminal or Azure Cloud Shell to get

the device connection string for the device you just registered:

YourIoTHubName: Replace this placeholder below with the name you

choose for your IoT hub.

az login

az iot hub device-identity create --hub-name <YourIoTHubName>
--device-id <NameOfYourDevice>

az iot hub device-identity show-connection-string --hub-name
<YourIoTHubName> --device-id <NameOfYourDevice> --output table

Note

Make a note of the device connection string, which looks like

HostName=<YourIoTHubName>.azure-

devices.net;DeviceId=<NameOfYourDevice>;SharedAccessKey={YourSharedAccessKey} .

You use this value later in the quickstart.

4. You also need a service connection string to enable the back-end application

to connect to your IoT hub and retrieve the messages. The following

command retrieves the service connection string for your IoT hub:

YourIoTHubName: Replace this placeholder below with the name you

choose for your IoT hub.

Send simulated telemetry

The simulated device application connects to a device-specific endpoint on your

IoT hub and sends simulated temperature and humidity telemetry.

In this workshop, we will be using Python as main language.

1. Check if Python is installed.

You can verify the current version of Python on your development machine

using one of the following commands:

Python2

Python3

az iot hub show-connection-string --name YourIoTHubName --
policy-name service --output table

Note

Make a note of the service connection string, which looks like

HostName=<YourIoTHubName>.azure-

devices.net;SharedAccessKeyName=service;SharedAccessKey={YourSharedAccessKey} .

You use this value later in the quickstart.

Important!!

The service connection string is different from the device connection string.

python --version

You can download Python from Python.org.

2. Run the following command to add the Microsoft Azure IoT Extension for

Azure CLI to your Cloud Shell instance. The IOT Extension adds IoT Hub, IoT

Edge, and IoT Device Provisioning Service (DPS) specific commands to

Azure CLI.

Download the sample Python project from https://github.com/Azure-

Samples/azure-iot-samples-python/archive/master.zip and extract the ZIP

archive.

3. Under Linux or MacOS system, make sure Boost Library is installed. Skip this

step if Windows system is used.

Linux

MacOS

Python2:

Python3:

4. Navigate to the root folder of the downloaded sample Python project. Then

navigate to the iot-hub\Quickstarts\simulated-device folder.

5. Open the SimulatedDevice.py file in a text editor of your choice.

python3 --version

az extension add --name azure-cli-iot-ext

apt-get install libboost-python-dev

brew install boost

brew install boost-python

brew install boost-python3

https://www.python.org/downloads/
https://github.com/Azure-Samples/azure-iot-samples-python/archive/master.zip
https://github.com/Azure-Samples/azure-iot-samples-python/archive/master.zip

Replace the value of the CONNECTION_STRING variable with the device

connection string you made a note of previously. Then save your changes to

SimulatedDevice.py file.

6. In the local terminal window, run the following commands to install the

required libraries for the simulated device application:

Python2:

Python3:

7. In the local terminal window, run the following commands to run the

simulated device application:

Python2:

Python3:

The following screenshot shows the output as the simulated device

application sends telemetry to your IoT hub:

Note

Make a note of the device connection string, which looks like

HostName=<YourIoTHubName>.azure-

devices.net;DeviceId=<NameOfYourDevice>;SharedAccessKey={YourSharedAccessKey} .

pip install azure-iothub-device-client

pip3 install azure-iothub-device-client

python SimulatedDevice.py

python3 SimulatedDevice.py

Read telemetry from Cloud

The IoT Hub CLI extension can connect to the service-side Events endpoint on

your IoT Hub. The extension receives the device-to-cloud messages sent from

your simulated device. An IoT Hub back-end application typically runs in the

cloud to receive and process device-to-cloud messages.

1. Run the following commands in local terminal or Azure Cloud Shell,

replacing YourIoTHubName with the name of your IoT hub:

Troubleshoot

To avoid the import iothub_client error

The current version of the Azure IoT SDK for Python is a wrapper over our C SDK. It is

generated using the Boost library. Because of that, it comes with several significant

limitations. See more details here

a. Check that you have the right version of Python. Be aware that only certain versions

works fine for this sample.

b. Check that you have the right version of C++ runtime Microsoft Visual C++

Redistributable for Visual Studio 2019. (We recommend the latest).

c. Verify that you have installed the iothub client: pip install azure-iothub-device-

client .

az iot hub monitor-events --hub-name YourIoTHubName --device-
id <NameOfYourDevice>

https://github.com/azure/azure-iot-sdk-c
https://www.boost.org/
https://github.com/Azure/azure-iot-sdk-python#important-installation-notes---dealing-with-importerror-issues
https://github.com/Azure/azure-iot-sdk-python#important-installation-notes---dealing-with-importerror-issues
https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads
https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads

2. The following screenshot shows the output as the extension receives

telemetry sent by the simulated device to the hub:

References

For more info, please visit https://docs.microsoft.com/en-us/azure/iot-hub/

Comments

https://docs.microsoft.com/en-us/azure/iot-hub/

Install Azure CLI with apt

If you are running a distribution that comes with apt , such as Ubuntu or Debian,

there's an x86_64 package available for the Azure CLI. This package has been

tested with and is supported for:

• Ubuntu trusty, xenial, artful, bionic, and disco

• Debian wheezy, jessie, and stretch

Install

We offer two ways to install the Azure CLI with distributions that support apt :

As an all-in-one script that runs the install commands for you, and instructions

that you can run as a step-by-step process on your own.

Install with one command

We offer and maintain a script which runs all of the installation commands in

one step. Run it by using curl and pipe directly to bash , or download the script

to a file and inspect it before running.

Note

The package for Azure CLI installs its own Python interpreter, and does not use the system

Python.

curl -sL https://aka.ms/InstallAzureCLIDeb | sudo bash

Note

This script is only verified for Ubuntu 16.04+ and Debian 8+. It may not work on other

distributions. If you're using a derived distribution such as Linux Mint, follow the manual install

instructions and perform any necessary troubleshooting.

Manual install instructions

If you don't want to run a script as superuser, follow these manual steps to install

the Azure CLI.

1. Get packages needed for the install process:

2. Download and install the Microsoft signing key:

3. Add the Azure CLI software repository:

4. Update repository information and install the azure-cli package:

Run the Azure CLI with the az command. To sign in, use the az login

command.

To learn more about different authentication methods, see Sign in with Azure

CLI.

Troubleshooting

Here are some common problems seen when installing with apt . If you

experience a problem not covered here, file an issue on github.

sudo apt-get update
sudo apt-get install curl apt-transport-https lsb-release gnupg

curl -sL https://packages.microsoft.com/keys/microsoft.asc | \
gpg --dearmor | \
sudo tee /etc/apt/trusted.gpg.d/microsoft.asc.gpg > /dev/null

AZ_REPO=$(lsb_release -cs)
echo "deb [arch=amd64] https://packages.microsoft.com/repos/
azure-cli/ $AZ_REPO main" | \
sudo tee /etc/apt/sources.list.d/azure-cli.list

sudo apt-get update
sudo apt-get install azure-cli

https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli?view=azure-cli-latest
https://github.com/Azure/azure-cli/issues

lsb_release does not return the correct base distribution version

Some Ubuntu- or Debian-derived distributions such as Linux Mint may not return

the correct version name from lsb_release . This value is used in the install

process to determine the package to install. If you know the code name of the

Ubuntu or Debian version your distribution is derived from, you can set the

AZ_REPO value manually when adding the repository. Otherwise, look up

information for your distribution on how to determine the base distribution code

name and set AZ_REPO to the correct value.

No package for your distribution

Sometimes it may be a while after a distribution is released before there's an

Azure CLI package available for it. The Azure CLI designed to be resilient with

regards to future versions of dependencies and rely on as few of them as

possible. If there's no package available for your base distribution, try a package

for an earlier distribution.

To do this, set the value of AZ_REPO manually when adding the repository. For

Ubuntu distributions use the bionic repository, and for Debian distributions use

stretch . Distributions released before Ubuntu Trusty and Debian Wheezy are

not supported.

Proxy blocks connection

If you're unable to connect to an external resource due to a proxy, make sure that

you've correctly set the HTTP_PROXY and HTTPS_PROXY variables in your shell.

You will need to contact your system administrator to know what host(s) and

port(s) to use for these proxies.

These values are respected by many Linux programs, including those which are

used in the install process. To set these values:

No auth

export HTTP_PROXY=http://[proxy]:[port]
export HTTPS_PROXY=https://[proxy]:[port]

Basic auth

You may also want to explicitly configure apt to use this proxy at all times.

Make sure that the following lines appear in an apt configuration file in /etc/

apt/apt.conf.d/ . We recommend using either your existing global

configuration file, an existing proxy configuration file, 40proxies , or 99local ,

but follow your system administration requirements.

If your proxy does not use basic auth, remove the [username]:[password]@

portion of the proxy URI. If you require more information for proxy configuration,

see the official Ubuntu documentation:

• apt.conf manpage

• Ubuntu wiki - apt-get howto

In order to get the Microsoft signing key and get the package from our repository,

your proxy needs to allow HTTPS connections to the following address:

https://packages.microsoft.com

export HTTP_PROXY=http://[username]:[password]@[proxy]:[port]
export HTTPS_PROXY=https://[username]:[password]@[proxy]:[port]

Note

If you are behind a proxy, these shell variables must be set to connect to Azure services with the

CLI. If you are not using basic auth, it's recommended to export these variables in your .bashrc

file. Always follow your business' security policies and the requirements of your system

administrator.

Acquire {
 http::proxy "http://[username]:[password]@[proxy]:[port]";
 https::proxy "https://[username]:[password]@[proxy]:[port]";
}

http://manpages.ubuntu.com/manpages/bionic/en/man5/apt.conf.5.html
https://help.ubuntu.com/community/AptGet/Howto#Setting_up_apt-get_to_use_a_http-proxy
https://packages.microsoft.com

CLI fails to install or run on Windows Subsystem for Linux

Since Windows Subsystem for Linux (WSL) is a system call translation layer on

top of the Windows platform, you might experience an error when trying to install

or run the Azure CLI. The CLI relies on some features that may have a bug in

WSL. If you experience an error no matter how you install the CLI, there's a good

chance it's an issue with WSL and not with the CLI install process.

To troubleshoot your WSL installation and possibly resolve issues:

• If you can, run an identical install process on a Linux machine or VM to see if

it succeeds. If it does, your issue is almost certainly related to WSL. To start

a Linux VM in Azure, see the create a Linux VM in the Azure Portal

documentation.

• Make sure that you're running the latest version of WSL. To get the latest

version, update your Windows 10 installation.

• Check for any open issues with WSL which might address your problem.

Often there will be suggestions on how to work around the problem, or

information about a release where the issue will be fixed.

• If there are no existing issues for your problem, file a new issue with WSL

and make sure that you include as much information as possible.

If you continue to have issues installing or running on WSL, consider installing

the CLI for Windows.

Update

Use apt-get upgrade to update the CLI package.

sudo apt-get update && sudo apt-get upgrade

https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/quick-create-portal
https://support.microsoft.com/help/4027667/windows-10-update
https://github.com/Microsoft/WSL/issues
https://github.com/Microsoft/WSL/issues/new
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-windows?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-windows?view=azure-cli-latest

Uninstall

1. Uninstall with apt-get remove :

2. If you don't plan to reinstall the CLI, remove the Azure CLI repository

information:

3. Remove the signing key:

4. Remove any unneeded packages:

Comments

Note

This command upgrades all of the installed packages on your system that have not had a

dependency change. To upgrade the CLI only, use apt-get install .

sudo apt-get update && sudo apt-get install --only-upgrade -y azure-cli

sudo apt-get remove -y azure-cli

sudo rm /etc/apt/sources.list.d/azure-cli.list

sudo rm /etc/apt/trusted.gpg.d/microsoft.asc.gpg

sudo apt autoremove

References

For more references, please refer to Microsoft Documentation - Install Azure CLI with apt

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-apt

Install Azure CLI on macOS

For the macOS platform, you can install the Azure CLI with homebrew package

manager. Homebrew makes it easy to keep your installation of the CLI update to

date. The CLI package has been tested on macOS versions 10.9 and later.

Install

Homebrew is the easiest way to manage your CLI install. It provides convenient

ways to install, update, and uninstall. If you don't have homebrew available on

your system, install homebrew before continuing.

You can install the CLI by updating your brew repository information, and then

running the install command:

The Azure CLI has a dependency on the python3 package in Homebrew, and

will install it on your system, even if Python 2 is available. The Azure CLI is

guaranteed to be compatible with the latest version of python3 published on

Homebrew.

You can then run the Azure CLI with the az command. To sign in, use az login

command.

To learn more about different authentication methods, see Sign in with Azure

CLI.

Troubleshooting

If you encounter a problem when installing the CLI through Homebrew, here are

some common errors. If you experience a problem not covered here, file an issue

on github.

brew update && brew install azure-cli

https://brew.sh
https://brew.sh
https://docs.brew.sh/Installation.html
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/authenticate-azure-cli?view=azure-cli-latest
https://github.com/Azure/azure-cli/issues
https://github.com/Azure/azure-cli/issues

Unable to find Python or installed packages

There may be a minor version mismatch or other issue during homebrew

installation. The CLI doesn't use a Python virtual environment, so it relies on

finding the installed Python version. A possible fix is to install and relink the

python3 dependency from Homebrew.

CLI version 1.x is installed

If an out-of-date version was installed, it could be because of a stale homebrew

cache. Follow the update instructions.

Proxy blocks connection

You may be unable to get resources from Homebrew unless you have correctly

configured it to use your proxy. Follow the Homebrew proxy configuration

instructions.

If you are behind a proxy, HTTP_PROXY and HTTPS_PROXY must be set to

connect to Azure services with the CLI. If you are not using basic auth, it's

recommended to export these variables in your .bashrc file. Always follow

your business' security policies and the requirements of your system

administrator.

In order to get the bottle resources from Homebrew, your proxy needs to allow

HTTPS connections to the following addresses:

• https://formulae.brew.sh

• https://homebrew.bintray.com

brew update && brew install python3 && brew upgrade python3
brew link --overwrite python3

https://docs.brew.sh/Manpage#using-homebrew-behind-a-proxy
https://docs.brew.sh/Manpage#using-homebrew-behind-a-proxy

Update

The CLI is regularly updated with bug fixes, improvements, new features, and

preview functionality. A new release is available roughly every two weeks. Update

your local repository information and then upgrade the azure-cli package.

Uninstall

Use homebrew to uninstall the azure-cli package.

Other installation methods

If you can't use homebrew to install the Azure CLI in your environment, it's

possible to use the manual instructions for Linux. Note that this process is not

officially maintained to be compatible with macOS. Using a package manager

such as Homebrew is always recommended. Only use the manual installation

method if you have no other option available.

For the manual installation instructions, see Install Azure CLI on Linux manually.

Comments

brew update && brew upgrade azure-cli

brew uninstall azure-cli

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-linux?view=azure-cli-latest

Getting Started with Raspberry Pi

In this course, we will be using Raspberry Pi in headless mode (a.k.a no

keyboard, mouse or monitor attached to Raspberry Pi). We will use our personal

computer to remote access to Raspberry Pi instead. The Raspberry Pi in this

workshop has prebuild image which has VNC and SSH capability.

Getting IP address

First of all, we will need IP address of Raspberry Pi. Power up your Raspberry Pi

with NB-IoT Hat attached. Then access to website https://maxis-

challenge.firebaseapp.com/ to obtain your Raspberry Pi Information by referring

IMEI from NB-IoT HAT.

VNC

1. Download VNC Viewer from here. Choose appropriate installer for your PC

which will remote access to Raspberry Pi.

https://maxis-challenge.firebaseapp.com/
https://maxis-challenge.firebaseapp.com/
https://www.realvnc.com/en/connect/download/viewer/

2. Open VNC Viewer.

3. Enter Raspberry Pi IP Address and Press Enter Button.

4. Enter username and password for Raspberry Pi. By default, username is pi

and password is raspberry .

5. Viola! Now you can access to Rasberry Pi remotely.

SSH

• Windows

a. Download Putty software from here.

b. Open downloaded Putty.exe.

https://www.putty.org/

c. Select SSH and enter your Raspberry Pi IP Address.

d. Press Open button to open SSH Terminal.

e. When login as appears, enter pi , we are going to login as pi.

f. By default the password is raspberry .

• Mac OS, Linux

• Run command ssh pi@<youripaddress> in local terminal.

• Enter password raspberry .

Comments

Grove Pi with Raspberry Pi

This course explains how to use Grove Pi HAT with Rasbperry Pi to interface,

control and get data from sensors.

The GrovePi can be programmed in Python, C, C#, Go, and NodeJS on the

Raspberry Pi. We will be using Python as main language for the course.

Install Grove Pi Python (Important)

Firmware Update (Important)

Getting started with Example DHT Temperature &
Humidity Sensor

Sounds familiar? Temperature and humidity are the values that are being sent to

Azure Cloud if you are following previous course. Right now we can send those

values from actual hardware DHT11 Temperature & Humidity Sensor.

$ sudo curl -kL dexterindustries.com/update_grovepi | bash
$ sudo reboot

$ cd Dexter/GrovePi/Firmware
$ sudo chmod +x firmware_update.sh
$ sudo bash firmware_update.sh

Steps

1. Plug the Grove Pi HAT onto Raspberry Pi.

2. Plug the DHT11 Sensor (Blue color) to port D4 on GrovePi.

3. Create a python script called dht.py.

4. Copy the following content into dht.py.

#!/usr/bin/env python

import grovepi

5. Run command sudo python dht.py to run the program.

6. If the setup is correct, we will see temperature and humidity values are

showing up.

import math
from time import sleep
Connect the Grove Temperature & Humidity Sensor Pro to
digital port D4
This example uses the blue colored sensor.
SIG,NC,VCC,GND
sensor = 4 # The Sensor goes on digital port 4.

temp_humidity_sensor_type
Grove Base Kit comes with the blue sensor.
blue = 0 # The Blue colored sensor.
white = 1 # The White colored sensor.

try:
 while True:
 try:
 # This example uses the blue colored sensor.
 # The first parameter is the port, the second
parameter is the type of sensor.
 [temp,humidity] = grovepi.dht(sensor,blue)
 if math.isnan(temp) == False and
math.isnan(humidity) == False:
 print("temp = %.02f C humidity =%.02f%%"%(temp,
humidity))
 sleep(1)

 except IOError:
 print ("Error")

except KeyboardInterrupt:
 print ("Pressed Ctrl+C. Exiting now..")

Important

We have discovered that to make the script to run properly, step Install Grove Pi Python

and Firmware Update must be completed at least once to install proper GrovePi Library.

Install GrovePi Library using pip install or pip3 install will cause the script not to

run properly.

Alternative

If the script above does not run nicely as expected, you can consider following

steps.

1. Plug the Grove Pi HAT onto Raspberry Pi.

2. Plug the DHT11 Sensor (Blue color) to port D4 on GrovePi.

3. Run the command below to run example DHT11 sensor script.

References

1. For more examples, you can visit https://github.com/DexterInd/GrovePi/

tree/master/Software/Python

2. For other programming language, you can refer to here https://github.com/

DexterInd/GrovePi/tree/master/Software

Comments

$ cd /home/pi/Dexter/GrovePi/Software/Python
$ sudo python grove_dht_pro.py

Important

For this alternative, every time you created a new script, the file grovepi.py must be alongside

with your created script. The file can be found at the same folder as the file grove_dht_pro.py .

https://github.com/DexterInd/GrovePi/tree/master/Software/Python
https://github.com/DexterInd/GrovePi/tree/master/Software/Python
https://github.com/DexterInd/GrovePi/tree/master/Software
https://github.com/DexterInd/GrovePi/tree/master/Software

Testing Raspberry Pi + SIM7000E NB-IoT
Hat + Maxis NB-IoT

NB-IoT AT command testing

AT command test is basic step to check if NB-IoT is working in good condition.

Prerequisite

• Raspberry Pi

• SIM7000E NB-IoT HAT

• MicroUSB Type B Cable

Steps

1. Insert and lock the NB-IoT SIM card onto NB-IoT HAT (Back). Connect the

NB-IoT HAT to Raspberry Pi Board via USB cable.

2. Run the command below on Raspberry Pi to check availability of HAT. It will

show /dev/ttyUSB2 if it exists.

ls /dev/ttyUSB2

3. Run the command below to install screen utility on Raspberry Pi, which

allows us to communicate to HAT via UART.

4. Run below command to start.

5. Type and enter AT command repeatedly until you see OK in return.

6. Run AT commands below to test connection with Internet.

sudo apt-get install screen

screen /dev/ttyUSB2 115200

->: User input

test using AT
-> AT
OK

check firmware version, make sure it contains SIM7000E
-> AT+GSV
SIMCOM_Ltd
SIMCOM_SIM7000E
Revision:1351B06SIM7000E

check service, result might be different
-> AT+CPSI?
+CPSI: GSM,Online,502-12,0x1054,62168,512 DCS 1800,-71,0,32-32
-> AT+CPSI?
+CPSI: NO SERVICE,Online

check signal quality
-> AT+CSQ
+CSQ: 23,99

configure to use NB-IoT
-> AT+CMNB=2
OK

-> AT+CNMP=38
OK

-> AT+CBANDCFG="NB-IOT",8
OK

7. Run Ctrl-a then Ctrl-d to minimise the screen. To Resume the screen

run screen -r .

8. Run Ctrl-a then type :quit to quit the screen.

PPP Installation on Raspberry Pi

NB-IoT HAT offers PPP (Point-to-Point Protocol) for us to connect Raspberry Pi

to Internet easily. The following steps show how to establish Internet connection

with Raspberry Pi.

-> AT+CSTT="M2MXNBIOT"
OK

-> AT+CPSI?
+CPSI: LTE NB-IOT,Online,502-12,0x74CE,28185722,12,EUTRAN-
BAND8,3702,0,0,-10,-82,-72,15

check establish connection
-> AT+CIPSTATUS
OK

STATE: IP START

start establish connection
-> AT+CIICR
OK

-> AT+CIPSTATUS
OK

STATE: IP GPRSACT

get IP address
-> AT+CIFSR
10.247.96.227

ping www.google.com
-> AT+CIPPING="www.google.com"
+CIPPING: 1,"172.217.166.132",111,52
+CIPPING: 2,"172.217.166.132",170,52
+CIPPING: 3,"172.217.166.132",110,52
+CIPPING: 4,"172.217.166.132",128,52

Prerequisite

• Raspberry Pi

• SIM7000E NB-IoT HAT

• MicroUSB Type B Cable

Steps

1. Plug the NB-IoT HAT into Raspberry Pi Board using USB. Ensure the Maxis

SIM card is inserted and secured on the HAT.

2. Run the command below on Raspberry Pi to check availability of HAT. It will

show /dev/ttyUSB2 if it exists.

3. Go to directory where you have downloaded the GIT respository. E.g. /home/

pi/maxis-nbiot-hackathon

4. Run the commands below to install PPP on Raspberry Pi.

ls /dev/ttyUSB2

cd /home/pi/maxis-nbiot-hackathon

5. Run command below to start the connection.

6. Run command below to check if interface ppp0 exists.

7. If it is successful, you should see IP exists in interface ppp0 from ifconfig

command.

8. Run command below to stop the connection.

9. To automate the connection during Raspberry Pi boot-up, run command

sudo systemctl enable nbiot.service . To see the effect, run sudo

reboot to restart Raspberry Pi.

References

For more references, please visit https://www.rhydolabz.com/wiki/?p=16325

Comments

$ cd "Raspberry Pi/PPP Installer"
$ sudo chmod +x install.sh
$ sudo ./install.sh

sudo systemctl start nbiot.service

ifconfig

sudo systemctl stop nbiot.service

https://www.rhydolabz.com/wiki/?p=16325

Send simulated telemetry using Raspberry
Pi

We will be using Raspberry Pi to send simulated temperature and humidity

telemetry for testing purpose. In this workshop, we will be using Python as main

language.

Steps

1. Check if Python is installed. You can verify the current version of Python on

your development machine using one of the following commands:

Python2:

Python3:

2. You can download Python by running below commands.

Python2:

Python3:

3. Download the sample Python project from https://github.com/Azure-

Samples/azure-iot-samples-python/archive/master.zip and extract the ZIP

archive.

python --version

python3 --version

sudo apt-get install python
sudo apt-get install python-dev

sudo apt-get install python3
sudo apt-get install python3-dev

https://github.com/Azure-Samples/azure-iot-samples-python/archive/master.zip
https://github.com/Azure-Samples/azure-iot-samples-python/archive/master.zip

4. Make sure Boost Library and OpenSSL library are installed.

5. Navigate to the root folder of the downloaded sample Python project. Then

navigate to the iot-hub\Quickstarts\simulated-device folder.

6. Open the SimulatedDevice.py file in a text editor of your choice.

Replace the value of the CONNECTION_STRING variable with the device

connection string you made a note of previously. Then save your changes to

SimulatedDevice.py file.

7. In the local terminal window, run the following commands to install the

required libraries for the simulated device application:

Python2:

Python3:

8. In the local terminal window, run the following commands to run the

simulated device application:

Python2:

Python3:

sudo apt-get install libboost-python-dev libcurl4-openssl-dev

Note

Make a note of the device connection string, which looks like

HostName=<YourIoTHubName>.azure-

devices.net;DeviceId=<NameOfYourDevice>;SharedAccessKey={YourSharedAccessKey} .

sudo pip install azure-iothub-device-client

sudo pip3 install azure-iothub-device-client

sudo python SimulatedDevice.py

sudo python3 SimulatedDevice.py

Comments

Troubleshoot

To avoid the import iothub_client error The current version of the Azure IoT SDK for

Python is a wrapper over our C SDK. It is generated using the Boost library. Because of

that, it comes with several significant limitations. See more details here

a. Check that you have the right version of Python. Be aware that only certain versions

works fine for this sample.

b. Check that you have the right version of C++ runtime Microsoft Visual C++

Redistributable for Visual Studio 2019. (We recommend the latest).

c. Verify that you have installed the iothub client:

sudo pip install azure-iothub-device-client

https://github.com/azure/azure-iot-sdk-c
https://www.boost.org/
https://github.com/Azure/azure-iot-sdk-python#important-installation-notes---dealing-with-importerror-issues
https://github.com/Azure/azure-iot-sdk-python#important-installation-notes---dealing-with-importerror-issues
https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads
https://support.microsoft.com/en-us/help/2977003/the-latest-supported-visual-c-downloads

Global Navigation Satellite Systems
(GNSS)

Example Python application to extract GNSS data from NB-IoT HAT

Prerequisite

Install Python Library micropyGPS

Python2:

Python3:

Python Example Code

sudo pip install git+https://github.com/inmcm/micropyGPS.git

sudo pip3 install git+https://github.com/inmcm/micropyGPS.git

import serial, sys
from time import sleep, time
from micropyGPS import MicropyGPS

NMEA_PORT='/dev/ttyUSB1'
AT_PORT='/dev/ttyUSB2'

def initGNSS():
 sys.stdout.write('Init GNSS\n')
 with serial.Serial(AT_PORT, 115200, timeout=5, rtscts=True,
dsrdtr=True) as ser:
 ser.write("AT+CGNSCFG=1\r\n".encode())
 sleep(1)
 ser.write("AT+CGNSPWR=1\r\n".encode())
 sleep(1)

try:
 sys.stdout.write('Started GNSS reader\n')

Comments

 reader = MicropyGPS()
 initGNSS()
 while True:
 try:
 with serial.Serial(NMEA_PORT, 115200, timeout=5,
rtscts=True, dsrdtr=True) as ser:
 ts = 0
 while True:
 # update
 data = ser.read().decode()
 reader.update(data)
 # read in every 2 seconds
 if time() - ts > 2:
 ts = time()
 print("UTC_Date={}, UTC_Time={}, lat={},
lng={}".format(reader.date_string(), reader.timestamp,
reader.latitude_string(), reader.longitude_string()))

 except Exception as e:
 print("Error: {}".format(str(e)))
 sleep(1)

except KeyboardInterrupt:
 sys.stderr.write('Ctrl-C pressed, exiting GNSS reader\n')

IoT Web Application using Node Red

Running Node Red on your Local Machine

1. Node Red requires NodeJS installation. Refer here to install latest NodeJS

package.

2. In local terminal window, install Node Red.

3. Run command node-red to start Node Red.

4. If the output shows Server now running at http://127.0.0.1:1880/, navigate

to 127.0.0.1:1880 in your web browser. You should be able to see Node Red

webview.

5. Press Ctrl+C in terminal window to close Node Red.

6. (Optional) By default, the Node-RED editor is not secured - anyone who can

access its IP address can access the editor and deploy changes. This is only

suitable if you are running on a trusted network. See this guide to secure

your Node-RED application.

Design your Node Red Application

In this application, we are going to learn to:

• Run an application which reads telemetry of the device using Azure Node

Red Library.

• Create a web UI view to display telemetry of the device.

• Send an email when alert is triggered.

Read Telemetry from Azure IoT Hub

1. Start Node Red, and browse to http://127.0.0.1:1880

npm install node-red --unsafe-perm

https://nodejs.org/en/
https://nodered.org/docs/user-guide/runtime/securing-node-red
http://127.0.0.1:1880

2. Install node-red-contrib-azure-iot-hub via Manage Palette. Manage

Palette can be found under dropdown menu from menu button at top right

corner of browser window.

3. From left pane of the browser window, scroll and search for Azure IoT Hub

Receiver node under Cloud category, then drag it into the center of

dashboard.

4. From the same left pane under output category, drag debug node to the

dashboard. (It will be renamed as msg.payload once it is placed at

dashboard)

5. Link it to Azure IoT Hub Receiver node.

6. Double-click on the Azure IoT Hub Receiver node and enter your Iot Hub

connectionString for your Azure IoT Hub and click Done.

7. Click Deploy.

8. You should see the below messages on your command line from where you

are running NodeRED. The Azure IoT Hub Receiver node should now say

'Connected'.

9. Once you have messages coming into your Azure IoT Hub, you should see

them in the debug pane. The Azure IoT Hub Receiver node should now say

'Received'.

Create a Web UI to display device telemetry

We are going to create 2 widgets which show temperature and humidity of the

sensor.

1. Install node-red-dashboard using Manage Palette.

2. Go to Hamburger Menu -> Import -> Clipboard.

3. Paste the following code into the "Import nodes" dialog. Then click Import.

[{"id":"4748d9e2.be7648","type":"tab","label":"Flow
1","disabled":false,"info":""},
{"id":"706c73f9.d1df8c","type":"azureiothubreceiver","z":"4748d9e2.be7648"
Receiver","x":140,"y":60,"wires":
[["3ba06501.57624a","4a231742.945ba8","6851aa80.949924"]]},
{"id":"3ba06501.57624a","type":"debug","z":"4748d9e2.be7648","name"
380,"y":60,"wires":[]},
{"id":"4a231742.945ba8","type":"ui_gauge","z":"4748d9e2.be7648","name"
0,"width":"6","height":"6","gtype":"gage","title":"Temperature","label"
,"format":"{{payload.temperature}}","min":
0,"max":"100","colors":
["#00b500","#e6e600","#ca3838"],"seg1":"","seg2":"","x":
429,"y":147,"wires":[]},
{"id":"6851aa80.949924","type":"ui_gauge","z":"4748d9e2.be7648","name"
1,"width":"6","height":"6","gtype":"gage","title":"Humidity","label"
0,"max":"100","colors":
["#00b500","#e6e600","#ca3838"],"seg1":"","seg2":"","x":
358,"y":208,"wires":[]},
{"id":"d4a658b7.4c8a28","type":"ui_group","z":"","name":"Current
Reading","tab":"b8f8f747.dab748","order":
1,"disp":true,"width":"12","collapse":false},
{"id":"b8f8f747.dab748","type":"ui_tab","z":"","name":"Overview",
1,"disabled":false,"hidden":false}]

4. Click Deploy.

5. Browse to http://127.0.0.1:1880/ui. You should be able to see the following

screen.

To know more about how to create customized Node Red Dashboard, you can

visit https://randomnerdtutorials.com/getting-started-with-node-red-dashboard/

as a starting point. There are also many websites online for you to Google!

Important !!

Import flow including Azure IoT Hub Receiver node does not include connectionString by

default. You will have to provide connectionString again. Double-click on the Azure IoT

Hub Receiver node and enter your Iot Hub connectionString for your Azure IoT Hub and

click Done.

http://127.0.0.1:1880/ui
https://randomnerdtutorials.com/getting-started-with-node-red-dashboard/

Send an email when alert is triggered

Here we will be using SendDrid service to send email for alert notification. You

can use other option like Gmail service.

1. Install SendGrid node node-red-contrib-sendgrid using Manage Palette

in Node-RED.

2. Create the flow by importing JSON below.

[{"id":"4748d9e2.be7648","type":"tab","label":"Flow
1","disabled":false,"info":""},
{"id":"706c73f9.d1df8c","type":"azureiothubreceiver","z":"4748d9e2.be7648","name":
IoT Hub Receiver","x":140,"y":60,"wires":
[["77746ec7.63db9","3ba06501.57624a"]]},
{"id":"3ba06501.57624a","type":"debug","z":"4748d9e2.be7648","name":"","active":tr
380,"y":60,"wires":[]},{"id":"4f0d6c8e.
4291e4","type":"sendgrid","z":"4748d9e2.be7648","from":"no-
reply@example.com","to":"popfibo@gmail.com","name":"Send
email","content":"text","x":962,"y":288,"wires":[]},
{"id":"77746ec7.63db9","type":"switch","z":"4748d9e2.be7648","name":"Condition
to send
email","property":"payload.temperature","propertyType":"msg","rules":
[{"t":"gte","v":"30","vt":"str"}],"checkall":"true","repair":false,"outputs":
1,"x":190,"y":291,"wires":[["167c7aa.94e2385"]]},
{"id":"27bb65ef.
759cba","type":"template","z":"4748d9e2.be7648","name":"Email
template","field":"payload","fieldType":"msg","format":"handlebars","syntax":"must
The temperature from {{ deviceId }} has exceeded 30°C! Current
temperature is {{ payload.temperature }}.","output":"str","x":
614,"y":290,"wires":[["38930ee.12709f2"]]},{"id":"167c7aa.
94e2385","type":"delay","z":"4748d9e2.be7648","name":"Limit 1
email per
5min","pauseType":"rate","timeout":"5","timeoutUnits":"seconds","rate":"1","nbRate
416,"y":291,"wires":[["27bb65ef.759cba"]]},{"id":"38930ee.
12709f2","type":"change","z":"4748d9e2.be7648","name":"Email
Settings","rules":
[{"t":"set","p":"payload","pt":"msg","to":"payload","tot":"msg"},
{"t":"set","p":"topic","pt":"msg","to":"Temperature
Alert","tot":"str"}],"action":"","property":"","from":"","to":"","reg":false,"x":
792,"y":289,"wires":[["4f0d6c8e.4291e4"]]}]

https://sendgrid.com

You will see the screen as below.

3. Get API key from SendGrid website.

4. Double click on Send email node (which is a sendgrid node), fill in necessary

info and paste the API key.

5. Click Deploy.

Explanation:

• Condition to send email is handled by Condition to send email node.

When the temperature exceeds 30°C, the email will be sent.

• Email has a cooldown period of 5 minutes, during this time the email will not

be sent although the temperature exceeds 30°C. This is handled by

Limit 1 email per 5 min node.

• Email template node allows you to decide what content to be sent in

email.

• Email settings node allows you to add extra parameters like topic, cc,

bcc.

Final result

• Backend Application

https://sendgrid.com/

• UI Dashboard

• Full working JSON

[{"id":"bc488bc5.7b36c8","type":"tab","label":"Flow
1","disabled":false,"info":""},
{"id":"72280523.04ccec","type":"ui_group","z":"","name":"Current
Reading","tab":"619a0ac8.53b8a4","order":
1,"disp":true,"width":"12","collapse":false},
{"id":"619a0ac8.53b8a4","type":"ui_tab","z":"","name":"Overview","icon":"dashboard
1},{"id":"74561fa2.60827","type":"ui_base","theme":
{"name":"theme-light","lightTheme":
{"default":"#0094CE","baseColor":"#0094CE","baseFont":"-apple-
system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-
Sans,Ubuntu,Cantarell,Helvetica Neue,sans-
serif","edited":true,"reset":false},"darkTheme":
{"default":"#097479","baseColor":"#097479","baseFont":"-apple-
system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-
Sans,Ubuntu,Cantarell,Helvetica Neue,sans-
serif","edited":false},"customTheme":{"name":"Untitled Theme
1","default":"#4B7930","baseColor":"#4B7930","baseFont":"-
apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-
Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif"},"themeState":
{"base-color":
{"default":"#0094CE","value":"#0094CE","edited":false},"page-
titlebar-backgroundColor":
{"value":"#0094CE","edited":false},"page-backgroundColor":
{"value":"#fafafa","edited":false},"page-sidebar-

backgroundColor":{"value":"#ffffff","edited":false},"group-
textColor":{"value":"#1bbfff","edited":false},"group-
borderColor":{"value":"#ffffff","edited":false},"group-
backgroundColor":{"value":"#ffffff","edited":false},"widget-
textColor":{"value":"#111111","edited":false},"widget-
backgroundColor":{"value":"#0094ce","edited":false},"widget-
borderColor":{"value":"#ffffff","edited":false},"base-font":
{"value":"-apple-system,BlinkMacSystemFont,Segoe
UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-
serif"}},"angularTheme":
{"primary":"indigo","accents":"blue","warn":"red","background":"grey"}},"site":
{"name":"Node-RED
Dashboard","hideToolbar":"false","allowSwipe":"false","dateFormat":"DD/
MM/YYYY","sizes":{"sx":48,"sy":48,"gx":6,"gy":6,"cx":6,"cy":
6,"px":0,"py":0}}},
{"id":"78f670e6.6d9bc","type":"ui_group","z":"","name":"Current
Reading","tab":"78eac48a.20fd8c","order":
1,"disp":true,"width":"12","collapse":false},{"id":"78eac48a.
20fd8c","type":"ui_tab","z":"","name":"Overview","icon":"dashboard","order":
1,"disabled":false,"hidden":false},
{"id":"b828193e.d6c448","type":"ui_group","z":"","name":"Current
Reading","tab":"91d14d66.2b94","order":
1,"disp":true,"width":"12","collapse":false},
{"id":"91d14d66.2b94","type":"ui_tab","z":"","name":"Overview","icon":"dashboard",
1,"disabled":false,"hidden":false},{"id":"8ea2cd4f.
2878c","type":"azureiothubreceiver","z":"bc488bc5.7b36c8","name":"Azure
IoT Hub Receiver","x":140,"y":60,"wires":
[["8f36c520.fb5e58","40b6b683.04c548","89f0aa8d.
578d48","96844771.27e478"]]},
{"id":"8f36c520.fb5e58","type":"debug","z":"bc488bc5.7b36c8","name":"","active":tr
380,"y":60,"wires":[]},
{"id":"40b6b683.04c548","type":"ui_gauge","z":"bc488bc5.7b36c8","name":"Temperatur
0,"width":"6","height":"6","gtype":"gage","title":"Temperature","label":"°C","form
0,"max":"100","colors":
["#00b500","#e6e600","#ca3838"],"seg1":"","seg2":"","x":
429,"y":147,"wires":[]},{"id":"89f0aa8d.
578d48","type":"ui_gauge","z":"bc488bc5.7b36c8","name":"Humidity","group":"b828193
1,"width":"6","height":"6","gtype":"gage","title":"Humidity","label":"%","format":
0,"max":"100","colors":
["#00b500","#e6e600","#ca3838"],"seg1":"","seg2":"","x":
358,"y":208,"wires":[]},{"id":"a72bcedd.
3440d","type":"sendgrid","z":"bc488bc5.7b36c8","from":"","to":"","name":"Send
email","content":"text","x":1056,"y":292,"wires":[]},
{"id":"96844771.27e478","type":"switch","z":"bc488bc5.7b36c8","name":"Condition
to send
email","property":"payload.temperature","propertyType":"msg","rules":
[{"t":"gte","v":"30","vt":"str"}],"checkall":"true","repair":false,"outputs":
1,"x":260,"y":293,"wires":[["50792deb.086f44"]]},
{"id":"33d14c05.c9e964","type":"template","z":"bc488bc5.7b36c8","name":"Email

Challenges

You can implement other features in this application.

1. Store telemetry of the device to database.

2. Create a web UI which shows the analytics.

3. .. and many more.

You can look into https://github.com/Azure/node-red-contrib-azure for more

libraries and modules for Azure. It is up to your creativity. The other libraries you

may find useful for your application:

• Azure Blob Storage

• Azure CosmosDB (formerly DocumentDB)

• Azure Event Hub

• Azure SQL

• Azure Table Storage

template","field":"payload","fieldType":"msg","format":"handlebars","syntax":"must
The temperature from {{ deviceId }} has exceeded 30°C! Current
temperature is {{ payload.temperature }}
°C.","output":"str","x":703,"y":293,"wires":
[["c97cd755.df9218"]]},{"id":"50792deb.
086f44","type":"delay","z":"bc488bc5.7b36c8","name":"Limit 1
email per
5min","pauseType":"rate","timeout":"5","timeoutUnits":"seconds","rate":"1","nbRate
492,"y":293,"wires":[["33d14c05.c9e964"]]},
{"id":"c97cd755.df9218","type":"change","z":"bc488bc5.7b36c8","name":"Email
Settings","rules":
[{"t":"set","p":"payload","pt":"msg","to":"payload","tot":"msg"},
{"t":"set","p":"topic","pt":"msg","to":"Temperature
Alert","tot":"str"}],"action":"","property":"","from":"","to":"","reg":false,"x":
884,"y":292,"wires":[["a72bcedd.3440d"]]}]

https://github.com/Azure/node-red-contrib-azure
https://github.com/Azure/node-red-contrib-azure/tree/master/blob-storage
%22https://github.com/Azure/node-red-contrib-azure/tree/master/documentdb
https://github.com/Azure/node-red-contrib-azure/tree/master/event-hub
https://github.com/Azure/node-red-contrib-azure/tree/master/sql
https://github.com/Azure/node-red-contrib-azure/tree/master/table-storage

Save your work!!!

One thing Node Red is good is that you can export your work to a JSON file. So if

next time you are building a new machine and set up fresh Node Red, you can

import the same file, do some configuration on nodes and you are ready to go!

• Export your application

• Download as JSON file

Deploy on Microsoft Azure

Once we have done developing the application, it is time for us to deploy it to the

cloud so we can view it anywhere as long as we have Internet.

Create base image

1. Log in to the Azure console

2. Select Virtual Machines option under Favourite List.

3. In the list of Virtual Machines, select Ubuntu Server, then click ‘Create’

4. Give your machine a name, the username you want to use and the

authentication details you want to use to access the instance

5. Choose the Size of your instance. Remember that node.js is single-threaded

so there’s no benefit to picking a size with multiple cores for a simple node-

red instance. A1 Basic is a good starting point

6. On the ‘Settings’ step, click on the ‘Network security group’ option. Add a

new ‘Inbound rule’ with the options set as:

7. Click ‘Ok’ on the Settings page, check the Summary then click ‘Ok’ to deploy

the new instance

After a couple of minutes your instance will be running. In the console you can

find your instance’s IP address.

Setup Node Red

1. The next task is to log into the instance then install node.js and Node-RED.

2. Log into your instance using the authentication details you specified in the

previous stage.

3. Once logged in you need to install node.js and Node-RED.

- Name: node-red-editor
- Priority: 1010
- Protocol: TCP
- Destination port range: 1880

https://portal.azure.com/

4. At this point you can test your instance by running command below.

5. Once started, you can access the editor at http://<your-instance-ip>:

1880/ .

6. To get Node-RED to start automatically whenever your instance is restarted,

you can use pm2:

Import your Application

If you have your application exported to JSON file from this step, deployment will

be super easy!

1. Go to Hamburger Menu -> Import -> Clipboard.

2. Select select a file to import . Choose your desired JSON file to be

import.

3. Click Import to finish your import.

4. Make sure your configuration is complete (e.g. Fill in Azure IoT Hub

ConnectionString, SendGrid info etc.)

$ curl -sL https://deb.nodesource.com/setup_10.x | sudo -E
bash -
$ sudo apt-get install -y nodejs build-essential
$ sudo npm install -g node-red

node-red

Note

You may get some errors regarding the Serial node - that’s to be expected and can be

ignored.

sudo npm install -g pm2
pm2 start `which node-red` -- -v
pm2 save
pm2 startup

5. Click Deploy.

References

For more information, please visit https://nodered.org/docs/getting-started/

azure

Comments

https://nodered.org/docs/getting-started/azure
https://nodered.org/docs/getting-started/azure

Example Web Application with ExpressJS
+ Ionic

Prerequisite

1. Install nodejs. Can be installed from official nodejs website

2. Install Ionic. Run npm install -g ionic cordova

Steps

Setup Backend

1. Go the Github repo that you have downloaded, e.g. <your/path/to/maxis-

nbiot-hackathon> .

2. The example project can be found on folder WebApplication/NodeJS .

3. Go to the root folder of example project.

4. Run command npm install to install dependencies.

5. Create a file call .env at root folder of this project and write following content

to the file.

6. Finally, run command npm start to start the server.

Setup Frontend

1. At the same folder WebApplication/NodeJS , go to folder named frontend .

2. Run command npm install to install dependencies.

3. Run ionic serve . Open browser at http://localhost:8010 to see the

result.

AZURE_CONNECTION_STRING=<your azure iot hub connection string>

https://nodejs.org/en/

4. Run ionic build --prod to build production files, which can be served by

express server itself. If server is running, you can browse http://

localhost:3000

Comments

	Maxis NB-IoT Challenge Workshop
	Courses
	Microsoft Azure Basic Setup
	Rasbperry Pi + Azure Integration
	Raspberry Pi + Grove Pi Setup
	Raspberry Pi + NB-IoT Setup
	Build Sensors Monitoring Web Application hosted at Azure Cloud

	Downloads

	Create Iot Hub and Devices In Azure
	Steps
	Sign up for Free Microsoft Azure Account
	Install Azure Command-Line Interface (CLI)
	Create IoT Hub
	Register Iot Devices
	Send simulated telemetry
	Read telemetry from Cloud

	References
	Comments

	Install Azure CLI with apt
	Install
	Install with one command
	Manual install instructions

	Troubleshooting
	lsb_release does not return the correct base distribution version
	No package for your distribution
	Proxy blocks connection
	CLI fails to install or run on Windows Subsystem for Linux

	Update
	Uninstall
	Comments

	Install Azure CLI on macOS
	Install
	Troubleshooting
	Unable to find Python or installed packages
	CLI version 1.x is installed
	Proxy blocks connection

	Update
	Uninstall
	Other installation methods
	Comments

	Getting Started with Raspberry Pi
	Getting IP address
	VNC
	SSH
	Comments

	Grove Pi with Raspberry Pi
	Install Grove Pi Python (Important)
	Firmware Update (Important)
	Getting started with Example DHT Temperature & Humidity Sensor
	Steps
	Alternative

	References
	Comments

	Testing Raspberry Pi + SIM7000E NB-IoT Hat + Maxis NB-IoT
	NB-IoT AT command testing
	Prerequisite
	Steps

	PPP Installation on Raspberry Pi
	Prerequisite
	Steps
	References

	Comments

	Send simulated telemetry using Raspberry Pi
	Steps
	Comments

	Global Navigation Satellite Systems (GNSS)
	Prerequisite
	Python Example Code
	Comments

	IoT Web Application using Node Red
	Running Node Red on your Local Machine
	Design your Node Red Application
	Read Telemetry from Azure IoT Hub
	Create a Web UI to display device telemetry
	Send an email when alert is triggered
	Explanation:

	Final result
	Challenges
	Save your work!!!

	Deploy on Microsoft Azure
	Create base image
	Setup Node Red
	Import your Application
	References

	Comments

	Example Web Application with ExpressJS + Ionic
	Prerequisite
	Steps
	Setup Backend
	Setup Frontend

	Comments

